
Extending Eclipse in Haskell
Leif Frenzel (himself@leiffrenzel.de)

I am the founder of an Open Source project (called eclipsefp, [2]) that develops
language support for the programming language Haskell [1]. Haskell is statically
typed, purely functional, with lazy evaluation. Code can be compiled and linked into a
native executable on Windows, Linux and other platforms, or run in an interpreter.

I have experimented with various approaches to use Haskell as implementation
language for Eclipse plugins. I'd like to exchange some experiences, point out some
problems I am stuck with, and I also would like to demonstrate a working prototype of
an Eclipse extension implemented in Haskell.

Motivation

Some people that are interested in participating in the eclipsefp project have asked if
it would be possible to implement part of the Eclipse-based Haskell IDE in Haskell
itself, because:

• the users of the IDE are Haskell programmers, not necessarily Java
programmers, so contributors could be more easily found if they could work in
their favorite language

• almost all tools that could be used for supporting Haskell development (Haskell
parsers, tools for static code analysis, refactorer, documentation generator) are
already there, but implemented in Haskell, and it should be possible to re-use
them

• there are tasks where an implementation in a functional language plainly seems
more apt than Java (e.g. parsing)

Approaches

In the project, we have tried out different approaches to integrate Haskell code:

1) Some tools are compiled and linked into an executable and just called as an
external process (Haskell compiler, doc generator), although they have an API that
would allow to call them directly from a Haskell program.

2) We are using a parser implemented in Haskell to parse the object model that fills
the outline view. The parser is compiled and linked into a .dll and integrated via a
JNI bridge [3].

We have also discussed the possibility of:

3) compiling Haskell code to Java bytecode and running it in the JVM that runs Eclipse
(but there is no Haskell > Java bytecode compiler, and it is not likely that there will be
one in production quality in the future)

4) running Haskell code in an interpreter (but that is slow and it would be an external
process, therefore there is no real advantage over calling an executable in an external

mailto:himself@leiffrenzel.de

process).

The first two worked out, the latter two did not.

Scope

Although people would like to implement some things in Haskell, they still have to
learn to use PDE and they have to understand the plugin model in Eclipse, manifest
files etc. It is likely that only the implementation part (i.e. what is currently done in
Java) of the extensions is replaced by something in Haskell.

It would be only a set of the extensions of the Eclipse platform that are likely to be
usefully implemented in Haskell, e.g. builders. Other things (e.g. UI extensions) may
still be better done in Java (or at least an object-oriented language). This means that
there may be plugins that contain a mix of extensions with implementations in
different languages, or alternatively, sets of plugins where the functionality that is
written in Haskell is separated from functionality written in Java. Since Haskell code is
compiled into different binaries on different platforms, this means that also usually
platform-specific fragments are involved.

Requirements for a general approach

• There must be a protocol for implementing Eclipse APIs in Haskell. E.g for a
builder extension, the abstract class IncrementalProjectBuilder must be
extended and the abstract build() method must be implemented. An
implementation in Haskell must provide a native implementation of that
method. This means there is a Java class that extends
IncrementalProjectBuilder and implements build() by linking it against a
native function, which is implemented in Haskell.

• There must be a protocol for calling Eclipse API methods inside Haskell code.
E.g. the build() method gets an IProgressMonitor object passed on which
progress state is supposed to be updated. In the Haskell code, there must be a
way to call the methods of IProgressMonitor on this object.

• For this, it is necessary to model the Eclipse APIs in Haskell. Since Haskell has a
type system too, this means some type conversion/mapping that may prove
difficult. Basically, all interfaces that are referenced in the API must be modeled
in Haskell code (i.e. IProgressMonitor, because it is a method parameter,
IResource, IResourceDelta etc., because they are used in a typical builder
implementation, and also static entry points like
ResourcesPlugin.getWorkspace().getRoot()).

• There is likely to be some bridging code, and most probably a common shared
framework of which all plugins that implement something in Haskell will
depend. The latter is needed because Haskell code has to run in a runtime
environment (that takes care of memory management, garbage collection ...).
Such functionality could be put into a core Haskell runtime plugin that manages
the Haskell runtime and provides libraries and interfaces to link the Haskell
code against. (There has been some work on the question of loading Haskell
code dynamically without losing type safety, see [4].)

From this it follows that implementors of an extension in Haskell would expect that
the Eclipse APIs are accessible from the Haskell code. The provider of a core Haskell
runtime plugin must therefore generate API interfaces that can be called from Haskell
functions.

API interfaces should be completely generated

When Eclipse APIs change, the change should look for a client in Haskell as it looks for
a client in Java. The interfaces have changed, he has to re-compile and adjust his
code against the new API. To make it look like this, the core Haskell runtime plugin
must be delivered with the newly generated API interfaces that reflect the new Eclipse
API.

(Side note: since Haskell is statically typed, this involves a huge mass of API interface
code, but it seems the process can be automated. Dynamic languages won't have to
have such large libraries of API interface code, which looks like an advantage. On the
other hand, API changes will probably be harder to notice, because changes in the
types of symbols, i.e. parameters or functions, may not be reflected in the API
interfaces in such a language; which looks like a disadvantage.)

Problem: different programming language paradigms

The trouble with the completely generated API interfaces approach is that it will not
work in some cases. For example, take an object action (extension to the extension
point org.eclipse.ui.popupMenus). Extenders must implement
IObjectActionDelegate, which has three methods:

 void setActivePart(IAction action, IWorkbenchPart targetPart);
 void run(IAction action);
 void selectionChanged(IAction action, ISelection selection);

The workbench calls the run() method when the action should be executed. Before
that, it updates state on the action delegate, that is, it calls the setActivePart() and
setSelection() methods. A typical implementation would store a reference to the
selection in a field and use it later in the run() method:

 public class MyDelegate implements IObjectActionDelegate {
 private ISelection selection;

 public void run(IAction action) {
 // usually use this.selection here to find out on which
 // objects the action was triggered
 }

 public void selectionChanged(IAction action, ISelection selection) {
 this.selection = selection;
 }
 }

This is typical for an object-oriented language, but problematic if the API is used from
a purely functional language (like Haskell). It would not make sense to have a native

implementation (in Haskell) for each of the interface methods. Rather, the state would
have to be collected and passed into a single function call:

 public class MyDelegate implements IObjectActionDelegate {
 private ISelection selection;

 public void run(IAction action) {
 performRun(action, this.selection);
 }

 public void selectionChanged(IAction action, ISelection selection) {
 this.selection = selection;
 }

 // implemented in Haskell
 private native void performRun(IAction action, ISelection selection);
 }

But if such patterns are involved, it is much harder to generate the entire API
interfaces (and it is hard to figure out automatically where such a pattern would be
usefully applied, if we only know the API interface - we would need a description of a
typical use).

In general, it may be difficult to connect to the Eclipse APIs where they assume typical
object-oriented programming idioms which cannot be used in the extension language.
Even if they could be used, they may be considered an inappropriate style in the
extension language.

References

 [1] http://haskell.org
The main Haskell website.

 [2] http://eclipsefp.sf.net
The homepage of the eclipsefp project.

 [3] http://www.cin.ufpe.br/~tbas/eclipsefp-parser.techarticle/build/article.html
An article that describes how we have integrated a parser implemented in
Haskell into the eclipsefp plugins.

 [4] http://www.cse.unsw.edu.au/~dons/hs-plugins/paper/
Describes an approach to build a dynamic structure out of plugins (not
unlike Eclipse) out of Haskell modules, without losing type safety. A core
Haskell runtime plugin would probably have to use this framework.

http://haskell.org/
http://www.cse.unsw.edu.au/~dons/hs-plugins/paper/
http://www.cin.ufpe.br/~tbas/eclipsefp-parser.techarticle/build/article.html
http://eclipsefp.sf.net/

	Extending Eclipse in Haskell

